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1. INTRODUCTION

Let £ be a linear functional which can be represented in the form

A5 =3 [ £ o),

where u,(x) are functions of bounded variation. Suppose a < x; < - <
x, < band I; C{0,...,, m — 1} are given and suppose we wish to approximate
#£(f) by an expression of the type

D

oy f I(xy),
i==1 jeI,

i

which is exact for polynomials of degree m — 1. It was shown by Schoenberg
[6] and Ahlberg and Nilson [1] that the coefficients o,; for which the above
approximation is best in the sense of Sard [5] can be obtained by operating
with £ on an appropriate spline interpolation formula.

In the present paper we study the problem of obtaining best approximations
to a certain class of linear functionals operating on functions of two variables.
It will turn out that for the solution of this problem, spline interpolation
formulas play the same important role as they do in the one-dimensional case.

In the next section a precise definition of the approximation problem is
given. Section 3 is devoted to the construction of a two-dimensional spline
interpolation formula. In the final section, a connection between best approx-
imations of linear functionals and spline interpolation is established.
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TWO-DIMENSIONAL SPLINE FUNCTIONS 353
2. THE APPROXIMATION PROBLEM

Let a; < a, and b, < b, be real numbers and define
R={(x,y)eE%*|a, <x <b,a, <y < by
Let C™"[R] denote the space of all real functions g(x, y) for which

oi+i

Wg(x, y), = 0,..., m, j = 0,..., n

exist and are continuous in R.
We consider linear functionals ¢ over C™*[R] of the following type:

m—1 n—1

Ag) = ) X

=0 j=0

. ot+i d
] ——————
f f (xa .V) oxt 8y’ g(x, y) ly dx
q by b“ o+ p
+n§1 fal n(X)Wg(x’yn) X
D by i ai‘f‘j d
+Elfa26'f (y)wg(x§,y) ly

D q i+
n » Yo 2.1
+§§ ey Wang(f NN @.1)

where of are real constants. The functions a¥(x, ), b(x), and ¢¥(y) are
assumed to be continuous over R and the points (x;, y,) lie in R.
For every ve{l, 2,..., p} and every p €{1,..., g}, let

I(V’ /“L) C{(l:v]) ! i = 03‘-'5 m — 1’.] = 09---: h— 1}

The possibility that certain sets I(v, u) are void is not excluded.

Suppose g € C™"[R] and ¢ is of type (2.1). Then we consider the problem
of determining real numbers ¢, so that the sum on the right side of the
formula

D Q 31
Ag) = o 8%, v + Z(g) (2.2)
[Ei El (i,.‘i)EZl(v,u) xT oy7 ]

represents an approximation to #(g) which is exact for all gell, 4, .
Here and below, I1,,_, ,_, denotes the set of all real polynomials of the form

m—1 n—1

2 Pty

=0 j=0
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The requirement %#(g) = 0 for all gell,,_; ,_; is equivalent to the system
of mn equations

[(xkyl) - i Za: Z P —— o) kyl ,
oL T Ox* 9y’ X=1,, U=,
k=0,.,m—1, I=0,.,n—1. 2.3)

In case the number of available parameters cﬁf; 18 greater than mn, we wish to
determine the ¢¥, so that (2.3) will be satisfied and the approximation will be
best in the sense of Sard [5].

For this purpose, we need a two-dimensional analog of Peano’s Theorem
[2]. In this analog and later on we use the truncated power function (x — %)} ,
defined as

_ Xk — 5
(x*f)fr:z(x X) for x—Xx =0,

for x — X <0.

THEOREM (2.1). Let £ be of type (2.1) and let £{(h) = Oforallhell,_; , .
Then for every g € C™*[R],

b1 b omn
Ug) = (=1 [ [ KOs, ) g 805 ) dy d
ay v ay

by

n—-1 " om+t i
+ 3 O [ K g by d

£ n+-k b grte b
+ T 0] Ka() g b )

where

K(9) = G Ty —Ty1 e — o7 0 = 07

1
Ky(x) = mfst((x —8)7t (b, — 1)), !l =0,.,n—1,

Kal9) = gror—yr (s — ¥ 0 — O,k =0num — 1.

The notation £,(x — s)7" (¥ — t)"" means that the functional ¢ is applied to
(s — x)77' (¢ — )27 considered as a function of s and t.
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Proof. Let (s,t) e R and g € C™"*[R]. Then we have
by P by P
86 0) = gy, b) — [ g by dx— [ g,y
b1 B2 p2
+ J-s J.t ox 0y g(x, y) dy dx
by 0 a
= gbr,b) — | (x — 9o gl b)) d
—f (v —of 3 g1, y) dy

LR o2
+] alfaz(x D (v = s =7 8, y) dy dx.

Integrating the last two terms n — 1 times by parts with respect to y, we
obtain

s6.0 =3 (-G T 5

I T AT

2l+l

+ 3 [ o G T by as

by by _ oyl plte
[ et S e sy dy

Now we integrate the last two terms m — 1 times by parts with respect to x.
This gives

m—1 n—1 k Kl
(by —5)s (be—1); @
= I Y ¥)
861 kgo Z_:o =D k! I ax* oy g(by 5 by)
£ bt (x — S)m_l (b, — t)l g
__1\ym+1 + 2 +
" Z:O =D fal m—D! ax™ oyt g(x, by) dx
= b k n—-1 k+n
(b =) (y — % o
—1yntk
+k§0( D J.az k'(n — 1! oxk dyr gb;, y)dy
R el € ) VO

+ (—1)m+nf (m — 1)' (n — 1)' Fv ay" g(x, y) dy dx.

Qg
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We apply £ to both sides of this expansion. Since, for (s, t) € R,
b =9 =0 —s) and (b, — )} = — 1),

and since ¢ vanishes for all elements of I7,, , ._, , we obtain

n-1 b m—1 1 M+
tx =) b, —1) 0
— __1ym+l
Cal®) = 3 (1) o (f o DT e gy 80 b )
mol b e n-1 Etn
2 by =) (y —F 2
__yn+k,
T ,Z“o( byl (f kKl(n— D! xF oyn g(bl’y)dy)

by Wbg _ T—l —t -1:_1 am+n
+(nmnd(f J()(Cm j)1)!8 - 1))! aen 805 Y) dy d).

@

Observe that
(d(x —8) (b — 1)) and 2 {(by ~ ) (y — )Y
are piecewise continuous functions of x and y, respectively. Furthermore,

Co((x —s)p 7t (y — 03
is a function of x and y which is bounded over R and continuous on every set

R, y) ={(x, )1 x, <x < X1, Vo <¥ < Vuya}

v="0..,p, p=0..,q

where xy = @y, Xp1u = by, ¥y = a,, and y,,; = b,. Therefore, one can
change the order of integration and application of . This completes the proof.
For later use we make here the following

Remark 1. Forve{l,.,p} pell,...,q} let
R'(,p) ={(x,y)eR|x >x,} and R¥x,y) ={(,p)eR|y = y.}
Suppose k£ = m, | > n and consider the functions

fix ) =G —x)i(y—r), A =& —x)L),
506, p) = XMy — p ).

(2.4)
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Since (in an obvious sense)

fD(x9 y) € Hk,l for (x’ y) € Rl(Va F’) N RZ(Va l"'),

Solx,y) =0 for (x,y)e R — R'(v, ;) N R¥(v, p),

Al y)ell,,  for (x,y)€ R\, p),

Silx, y) =0 for (x,y)e R — Ri(v,p),

flx, y)ell,,  for (x,y)e Ry, p),

fx,y) =0 for (x,y)e R — Ry, p),
it follows that Theorem (2.1) can also be applied to functions g(x, y) of type
(2.4) if k = m and/or [ = n.

Because %(g), as defined by (2.2), is of type (2.1). It follows from Theorem

(2.1) that for all g € C™*[R],

b1 abs om+n
A@) = (1 [ [ K p) g g0 y) dy dx
T+ T 1 [ K)o g, by) d
—1ym X) =5 8(x, x
= o u ox™ oyl 2

m—1 " by gkin
+ X (=D | | Kal) i 86y D

provided #(g) vanishes for all gel1,,_, ;.

Hence, the sum on the right side of (2.2) defines an approximation to g)
which is best in the sense of Sard [5] if the parameters ¢}/ are a solution of
the following minimization problem: Minimize

n-1

by m—1 by b .bs
Y [ Kaprde+ Y [ Kardy+ [ [ Keoppdyax @5)
=0 ¥ ay k=0 % a2 ay v az

under the side conditions

g =0 forall gell, ;,.., (2.6)
where
1
K(x’ y) - (m _ 1)! (n _ 1)! '%st((x - S)Z.L_l (y - t)i—1)5
1
Ky(x) = mgst((x — s)et (b — DY), [ =0,.,n—1,
1

Ko(y) = m'%st((bl =)y — 0y, k=0,.,m-—1,
and Z(g) is defined by (2.2).

640/3/4-2
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Before we pursue this matter any further we turn to the construction of a
two-dimensional spline interpolation formula, which will be a basic tool

for the solution of the above minimization problem.

3. THE TwO-DIMENSIONAL g SPLINE INTERPOLATION FORMULA

Let I(v, u) be defined as in Section 2 and define the subsets I,

of {0,..., m — 1}and J;, of {0,...,n — 1}, forj = 0,...,n — 1,v = 1,...

i=0,..,m—1andp = 1,.., g, as follows:

Nel,;, ifandonlyifthereexists/ <n—1— j
such that (N, Del(v, 1) U -+~ U I(v, q),
NelJ;,, ifandonlyifthereexists k <m—1—1i
such that (k, Nye I(1, p) U --- U I(p, p).
Finally, for j = 0,...,n — 1, let
L, ={0,...,m — 1}
We consider the one-dimensional spline functions

P

six) =Y Y ofix — X)), j=0,.,n—1,

v=1iely,

and

aq
(=Y ¥ piy—p)¥ ™, i=0.,m—1

u=1 }'GJ

Furthermore, let

fen =73 i Y el —x)(y —p)T

y=1 pu=1 (i,j)el(v,u)
and denote by
an = an(l(v, I“’), Xy s VusDs q)

the set of all functions S(x, y) which can be written in the form

n—1 m—1

S, p) = Fp) + X Visix) + 3 Xdy) + P, p),

’P_ls

(3.1)

(3.2)
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where P(x, y)ell,,_, ., and

D) =0 for x>x,,

an

—f(x,y)EO for y=y,,
am
dm

dr
— 1 = > j = 0,...,m — 1.
& t{y) =0 for y>2y,, i=0,., 1

s;{(x)=0 for x>x,, j=0,.,n—1,

As in Ref. [4] we call any S € £2,,,, a two-dimensional natural g spline for the
knots (x,, ), v = l,.., p, p = 1,..., g, the sets I(v, u) and order (m, n).

Let B be arbitrary real numbers and consider the following interpolation
problem: Find S € £,,,, satisfying

ot .

e S(x,, ) =B, G Del,p),
v="1.,p, pu=1.,4q (3.3)

We say the interpolation problem is (m, n)-poised [4], provided that

ai+] N .
ox? 3y7 S(xv L] yu) 9 (l, _]) € I(V, ["),
v=1..,p, ® = L.., q,

imply S(x, y) = 0 for all S € 2, such that f(x, y) = 0.

In Ref. [4] it was shown that if the interpolation problem is (1, n)-poised,
then there exists a unique S, € £2,,, which satisfies (3.3). The parameters
determining this Sy(x, y) can be obtained by solving a system of linear
equations.

Now suppose the interpolation problem is (m, n)-poised. For (i, j) € I(», n),
v=l,.,p, p=1,.. 4, let S¥(x) denote the uniquely determined element
of ,,, which satisfies the relations

ortl 1 if k=i, Il=j é=v, n=u,
T g o) o it ki [ f Ev, orq £
(k,Del¢n), §=1,..,p, n=1L1.,q9 (B4

For functions g(x, y) with appropriate differentiability properties we consider
the interpolation formula

k4 q

geN =3 % T ST, i) + A ()

v=1 u=1 (2,7)el(v,u)
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The sum on the right side represents the element of £2,,,, which satisfies (3.3)
with

i+i
ij__
Vi axz 8)17 g(xv » yu)

Following Schoenberg’s terminology in the one-dimensional case [7], we
call (3.5) the (two-dimensional) g-spline interpolation formula of order
(m, n). It is exact for all elements of Q,,,, .

In the next section we shall assume that for v = 1,...,pand p = 1,..., g,
the sets I(v, ) and I(p, u) have the following properties:

If for any i, €{0,..., m — 1} there exists some j, €{0,...,n — 1}
and some pge{l,..,q} such that (i, j,) € I(v,u,), then
@iy, /) e l(v, q) for all je{0,.,n— 1} (3.6)

If for any j, €{0,..., n — 1} there exists some i, € {0,..., m — 1}
and some v,e{l,..,p} such that (i, j,) € I(vy, ), then
G, oy I(p, ) for all i € {0,..., m — 1}. (3.7

It is easily seen that under these assumptions

I()v = Ilv == In—l,v > V= 15-",p5
and

Jl)u = Jlu = = Jm1,u B = 1:'“’ q
As a simple example of an interpolation problem (3.3) which is (m, n)-poised
and has the properties (3.6) and (3.7), we consider the case m = n = 2 and
D, q > 2. Furthermore, we assume that the values of S(x, y) at the mesh
points (x, , y,), the normal derivates of S(x, y) at the boundary points of the

mesh, and the cross derivative at the four corners of the mesh are prescribed.
That is, we assume

I(1,1) = I(1,q) = I(p, 1) = K(p, q) = {(0,0), (0, 1), (1, 0), (1, 1)},
I, p) = I(p, ) = {(0, 0), (1, 0)}, p=2.,9—1,
I(v, 1) = I(v, q9) = {(0, 0), (0, 1)}, v=2,.,p—1,
I(v, ) = {(0, 0)}, v=2.,p—1, p=2,.,9—1

Under these assumptions,

Iil=Iip:{0’1}’ ji=0,1,
i = {0}, j=0,1, v=2,.,p—1,
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and
Jil _ Jiq - {0, 1}, l = 0, 1,
={0, i=01 p=2.,q9—1

Therefore, as is not difficult to verify, the interpolation problem (3.3) is
(m, n)-poised. Finally, the definitions of I, ¢) and I(p, u) imply immediately
that (3.6) and (3.7) are fulfilled.

4. THE BEST APPROXIMATION FORMULA

Having the spline interpolation formula (3.5) at our disposal we can now
prove the main theorem of this paper. It states that the best approximation
(2.2) to £(g) is obtained by applying ¢ to both sides of the two-dimensional
g-spline interpolation formula (3.5). In the one-dimensional case this fact was
established by Schoenberg [6] and Ahlberg and Nilson [1].

THEOREM (4.1). Suppose that the interpolation problem (3.3) is (m, n)-
poised and satisfies (3.6) and (3.7). Furthermore, let x, = b, and y, = b, .
Then the coefficients cii, minimize the function (2.5) under the side conditions
(2.6), if and only if

B =4SH), G, Heltv,p), v=1l.,p, p=l.,q
Here Sii(x, y) are the spline functions defined by (3.4).

Proof. We shall prove this theorem by generalizing a method which was
used by Greville [3] and Schoenberg [6] in establishing Theorem (4.1) for
the one-dimensional case.

Let £ be of type (2.1) and g € C™*[R]. We consider the linear functionals

P q i
POH=M@ =LY T g, M)
and
D q pit+i
Fe) = 4g) — 21 ugl (i.i)ezl(v.u) o ax* Oy’ 8Ly Yl @

where ¢}, = /(S¥) and the coefficients d’J are only required to satisfy the
equations (2.3).
Since we know that the spline interpolation formula (3.5) is exact for all
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S e ,,, it follows that the approximation formula (1) obtained from (3.5)
by operating on both sides with £ is also exact for all S 2,,, , i.e.,

Z(S) =0 forall Sef,.,. &)
Hence, also,
A(g) =9 (g =0 forall gell, ;... “)
Let
, ? q dii — i
M — 1 i3] v‘u Vi ;
x,7) §§ ”g‘”,( Y P g Y e —
X (6 — xR (y — e
then
Y Y AL =Sty Tty ™ 1
('@st ‘%st) ( (m _ 1)' (l’l . 1)| ) _ axm ayn M (xs y) (5)
Because

(x =5yt (y — oyt
= (=" =2t (v — Ot + (=D e — st ¢ — p)pt
+ (D s =)t =) =) (y —o)n
it follows from (1), (2), (4), and (5) that

gm+n

Frara MY(x, y)

1 1
T m =D =11 (%

na Gt VA C Rl ) Ml G ) it ol G Y Sl el il Gl ) i

A1 (s — X (y — 0

? g dii — ¥ o s
:vg ; Z (m— l—i)!(nc—l— ])'((_1) (X,,—x)+

(4. 3)ellv,u)

X (7 = P (D — ) (), —
o (L Gy — X (), — ),

*If m = 1wedefine (s — x).%0y — 1771 = (x — ). — ¥ = (s — 0.0 — =0
for x = s, and if n = 1 we define (s — X)T(y — 1),* = (x — 7T — »),° = (s — )™
t—y»L=0fory =1
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It is a direct consequence of this equality and of the definition of M(x, y) that

gm+n

Y =
o gy M6, ) =0 ©)
ifx <x,y<y,orifx=x,,y>y,.
Now let
a2n-—1—l
Sl(X) = W‘ Ml(x, b2 + O), l = O,..., n— 1, (7)
and
82m—1-—k
1) = zamam M +0,)),  k=0..,m—1 (®)

Then it follows from (6) and the definition of M(x, y) that

smMx) =0 for x <x and X=X, )
and

t"(y) =0 for y <y and Y=V, (10

Furthermore, for every £ €{l,..., p}, the contribution to s;(x) due to a fixed
knot x, is

z i dil — cf » _—
L ke, OV =T ==t G )T e

=1 (i, 5)ell{,u)
u=l (i)l (11)

Similarly, for every 75 €{l,..., ¢}, the contribution to #(y) due to a fixed
knot y, is

2 s dy—ch i 2n—1—j
2T (D ey (B — ) (=

v=1 (i.7)el(v,n)

i (12
Thus, by (3.6) and (3.7), 5,®™'~9(x) is continuous at x = x, if i ¢ [,
and 7{*~1-9(y)is continuous at y = y, if j ¢ Jy, , where I;; ,/ = 0,...,n — 1,
&= 1,.,p,and Jy,, k = 0,...,m — 1, n = 1,..., ¢, are defined by (3.1) and

(3.2), respectively.
It follows therefore from (9) and (10) that

(b — y) si(x) € 2,n, for I=0,.,n—1, 13)
b — x)ty)e 2, for k=0,.,m—1. (14
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Since (3.6) and (3.7) hold, we conclude from (7), (8), (11), and (12) that there
are coefficients 8!/, , (i, j)el,,, v = 1,..,p, p = 1,..., g, such that

=0 for (4, Hel,, v=1.,p—1, p=1l,.,q—1, (15

satisfying

Mo =YY T 2

DS wraeaw @m —1 =D 2 —1 — j)!

X (x = x )"y — ),

3211.—-1-—-1
—g—yzm N(x, b2 -I— 0) = Sl(X), l = 0,..., n— 1, (16)
and
a2m—l——k
TERIE Nb, +0,y) =t(y), k=0,...,m—1 (17)
Now let

M¥(x, y) = MY(x, y) — N(x, ).
Then, by (7), (8), (16), and (17),

3211—1—1

’gyz—n-lTMz(x’ by +0)=0, l=0,.,n—1,
Sam—1-k

Faw Moy +0,)) =0,  k=0,..,m—1L

Using Lemma (2.2) of Ref. [4] we, obtain from these identities that
" e —
ame(x,y)_O for x = x,,

and

n

0
oy

M¥x,y) =0 for y = y,.

Hence, by the definitions of M(x, y) and N(x, y),
M¥(x, y) e Q,., . (18)
If we put

12
§00) = a—f’yf M, by, I =0,.,n—1, (19)
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and
k

. 0
W) = 33 M¥br. Y k= Onm— L, 20)

it follows that

§imi(x) =0 for x>x,, I=0..,n~—1,

i"(y)=0 for y=y, k=0.,m—1
Since it is an immediate consequence of (3.6) and (3.7) that §»—1-9(x) is

continuous at x = x,, v == 1,..., p, if i ¢ I,,, and {{2»-1-9(y) is continuous
aty=y,,p = 1l,.,qif j¢ J,, we have

by, — Yy by — v & . )
( 2 1' y) SL(X) _ ( 2 T y) ;1 EZI w,l):l(x _ xv)im—l—t egmn’
I =0,.,n—1, (l)
by — x)* by — x)¢ . )
(lkv iy =4 T = Y Y Ay —y)riel
: : u=l jeJ;,

k=0,..,m—1. (22
For i = 0,1, let

Ki(x) = m%«x —smib, — 1),  I=0..,n—1, (23)

Ka) = Frorm i 2l — 9 = O k=0m— 1, (4)

Ki(x’ y) = (m — 1)'1(n — 1)' '@it((-x - S)T_l (y - t):f_l)' (25)

It follows from (3), (4), (19)—(24), Theorem (2.1), and Remark 1 that
1 b
0 = (b, =)' $() = (=1 | K0 §m)
b1 om+1
= (—1)m*t fa K3(x) W M?3(x, b,) dx, I=0,.,n—1, (26)

0 = i 8, — 9 4N = (—1r* [ KR G) ()

P 0 Jhtn
= (— Iy J.aZKZk(y)WMz(bl,y)dy, k=0,.,m—1 (7
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Since by (3) and (18), #°(M3*x,y)) = 0, we obtain from (4), (25)-(27),
Theorem (2.1), and Remark 1 that

by oba gmtn
f f KD(X, y) W Mz(x, y) dy dx = 0.

Observe that, by (15), N(x,y) =0 for x <x,=b, and y < y, = b,.
Hence, the above equality implies

by Wb X0 om+n )
| ) f (5, ) gy M6 ) dy dx = 0,
which, by (5) and (25), is equivalent to

[ ] Koo y) — Ko ) dy dx = 0.

An immediate consequence of the last equality is

[2J o avas

- f :l .[ :2 (K°(x, )2 dy dx + _[ ) f ) (K'(x, y) — K%x, y)* dy dx.  (28)

a; v ag

Furthermore, by (3), (13), and (14),

Ro(bz — ¥) si(x)) = R(by — x)* t(»)) = O,
I1=0,.,n—1, k=0,..,m— 1.

Thus, it follows from (4), (23), (24), Theorem (2.1), and Remark 1 that

bl
| Ky sy dx =0, 1=0,,n—1, (29)

and
L}
f ng(y) t,‘c”)(y) dy =0, k=0,.,m—1. 30)
ag

By (1), (2), (23), (24), and the definition of M'(x, y),

3m+2n—14—l
K%Z(X) — K{];(X) = W Ml(x, bg + 0), [ = 0,..., n— 1, (31)
g2m—1—k+n

m Ml(bl Jr 0, y), k= 0,..., m — 1. (32)

Kzlk(y) — K3(y) =
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Hence (7), (8), (29), and (30) imply

L2
| KK — K@) dx =0, 1 =0,n—1,

b2
[ KRG — KRG dy =0, k=0,ym— 1.

From these equalities it follows that

b

| i ax
e x| R — KR, 1= Opn— 1, (3)
[ xaonay

by by
= [ KEONdy + [ (Ki() — KRN dy, k=0,.,m—1. (39)
Hence, (28), (33), and (34) imply that

1:2;: j: (Klll(x))2 dx + 7:2;:: f:: (Kzlk(y))2 dy + f:l f:z (Kl(x, y))z dy dx

n-1 b m—1 by by Wba
> Y [ ®ueordx+ Y [ KM 4| [ (K ) dydx
=, = e a9 ay
unless
K'(x, y) — K'(x, ) = 0,
Ki(x) — K{i(x) = 0, [=0,.,n—1,
and
KL() —K%(» =0, k=0,.,m—1,
which, by (25), (5), (31), and (32) is equivalent to
i =di, (G Delv,p), v=1.,p, p=1l,q

This completes the proof of the theorem.
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Remark 2. let geC™[R] and (X,y)e R. The linear functional ¢
defined by #(g) = g(x, y) is of type (2.1). Hence, it follows from the above
theorem that the spline interpolation formula (3.5) is a best interpolation
formula in the sense of Sard [5], provided the interpolation problem (3.3) is
(m, n)-poised, and (3.6) and (3.7) hold and x, = b;, y, = b,.
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