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1. INTRODUCTION

Let t be a linear functional which can be represented in the form

m-l b

t(f) = L f !lv)(X) dJLix),
v=o a

where JLv(x) are functions of bounded variation. Suppose a < Xl < ... <
X p < b and Ii C {O,... , m - I} are given and suppose we wish to approximate
t(f) by an expression of the type

p

L L aii!U)(xi),
i=l jEI,

which is exact for polynomials of degree m - 1. It was shown by Schoenberg
[6] and Ahlberg and Nilson [1] that the coefficients au for which the above
approximation is best in the sense of Sard [5] can be obtained by operating
with t on an appropriate spline interpolation formula.

In the present paper we study the problem of obtaining best approximations
to a certain class of linear functionals operating on functions of two variables.
It will turn out that for the solution of this problem, spline interpolation
formulas play the same important role as they do in the one-dimensional case.

In the next section a precise definition of the approximation problem is
given. Section 3 is devoted to the construction of a two-dimensional spline
interpolation formula. In the final section, a connection between best approx
imations of linear functionals and spline interpolation is established.
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TWO-DIMENSIONAL SPLINE FUNCTIONS

2. THE ApPROXIMATION PROBLEM

Let al :s;; a 2 and b1 :s;; b2 be real numbers and define

Let cmn[R] denote the space of all real functions g(x, y) for which
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oi+j
oxi oyj g(x, y), i = O, ... ,m, j = 0,... , n

(2.1)

exist and are continuous in R.
We consider linear functionals t over cmn[R] of the following type:

t(g) = :~1 ~t: II:: s:: aij(x, y) O:ii;yj g(x, y) dy dx

p q .. oi+j
+ {;1 n~1 (X~~ oxi oyj g(x<, y,,) I,

where (X~~ are real constants. The functions aii(x, y), b~j(x), and c~j(y) are
assumed to be continuous over R and the points (xg , y~) lie in R.

For every v E {I, 2,... , p} and every fJ, E {I,... , q}, let

l(v,fJ,) C {(i,j) I i = 0,... , m - l,j = 0,... , n - I}.

The possibility that certain sets lev, fJ,) are void is not excluded.
Suppose g E cmn[R] and t is of type (2.1). Then we consider the problem

of determining real numbers c~~ so that the sum on the right side of the
formula

represents an approximation to t(g) which is exact for all g E llm-l.n-l .
Here and below, llm-l.n-l denotes the set of all real polynomials of the form

m-l n-l

L I PijXiyj.
i~O j~O
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The requirement fJi(g) = °for all g E llm-l.n-l is equivalent to the system
of mn equations

k = 0, ... , m - 1, 1= 0, ... , n - 1. (2.3)

In case the number of available parameters c~~ is greater than mn, we wish to
determine the c~~ so that (2.3) will be satisfied and the approximation will be
best in the sense of Sard [5].

For this purpose, we need a two-dimensional analog of Peano's Theorem
[2]. In this analog and later on we use the truncated power function (x - x)~ ,
defined as

( _ -)k -lex - X)k
x X + - ° for x - x;;::: 0,

for x - x < 0.

THEOREM (2.1). Let t'beoftype(2.l) andlett'(h) = 0forallhEllm_l.n_1 '

Then for every g E cmn[R],

where

1
K(x, y) = (m _ I)! (n _ I)! tst((x - S)~-l (y - t)~-l),

Kl!(x) = (m _\)! l! t'st((x - S)~-l (b2 - t)!), I = 0, , n - 1,

K2k(y) = k! (n 1_ I)! t'st((b1 - S)k (y - t)~-l), k = 0, , m - 1.

The notation tst(x - S)~-l (y - t)~-l means that the functional t is applied to
(s - X)~-l (I - Y)~-l considered as a function of sand t.
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Proof Let (s, t) E Rand g E cmn[R]. Then we have

~ a ~ a
g(s, t) = g(bl , b2) - Is ax g(x, b2) dx - It 3Y g(bl , y) dy

I
b' b2 a2

+ sIt ax ay g(x, y) dy dx

b, a
= g(bl ,b2) - I (x - s)~ T g(x, b2) dxa, X

b2 a- I (y - t)~ Ty g(b l , y) dy
a2

b, b2 a2

+ I I (x - s)~ (y - t)~aT g(x, y) dy dx.
~ a2 X Y
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Integrating the last two terms n - I times by parts with respect to y, we
obtain

n-I (b - t)1 al

g(s,t) = L (-1)1 2 II +~g(bl,b2)
1=0 • uy

n b2 (y - t)~-I an
+(-1) t

2

(n-l)! ayn g(bl,y)dy

n b, b2 0 (y - t)~-I al+n

+(-1) I I (x -s)+ ( -1)1 aa-ng(x,y)dydx.
a, a2 n. x y

Now we integrate the last two terms m - I times by parts with respect to x.
This gives

m-I n-I (b)k (b )1 akH
g(s t) = " "(-I)kH I - S + 2 - t + -_ g(b b)

, k':O 1::0 k! l! axk ayl I' 2

m-I IbO (bl - S)~ (y - t)~-I ak+n

+ L (_I)n+k k'. (n _ I)'. -~::--:-k""7"-n-g(bl' y) dy
k~O ao uX uy

b, Ib2 ( )m-I ( t)n-I am+n+ (_l)m+n I x - s + y - + axm ayn g(x, y) dy dx.
a, ao (m - I)! (n - I)!
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We apply t to both sides of this expansion. Since, for (s, t) E R,

and

and since t'vanishes for all elements of IIm -l. n - 1 , we obtain

m-1 . b2 (b _ sl' ( _ t)n-1 8k +n+ " (-l)n+kt t (J _...!... L __L l __ g(b y)dy)
f:::o S a, k! (n - I)! ax/;; 8yn l'

m+n (b1 .b, (x _ s)';:-l(y - t)~-l am+n

+ (-1) 1st f
al
j a2 (m - 1)[ (n _ 1)[ axm ayn g(x, y)dydx).

Observe, that

and

are piecewise continuous functions of x and y, respectively. Furthermore,

is a function of x and y which is bounded over R and continuous on every set

R(x,y) = {(x,y) I Xv < X < XvH, y~ < y < Y"H}

v = O, ... ,p, fL = 0,... , q,

where Xo = aI' xP+l = bl , Yo = a 2 , and yp+1 = b2 • Therefore, one can
change the order of integration and application of t. This completes the proof.

For later use we make here the following

Remark 1. For v E {I, ... ,p}, fL E {I,... , q}, let

RI(v, fL) = {(x, Y) E R I x ~ xv} and R2(X, y) = {(v, fL) E R I y ~ y,,}.

Suppose k ~ m, 1~ n and consider the functions

fo(x, y) = (x - xv)~ (y - Y,,)~ , flex, y) = (x - xv)~ l,
fix, Y) = x/;;(y - YJ~·

(2.4)
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Since (in an obvious sense)

fo(x, y) E Ih.l

fo(x, y) = °
fl(X, y) E Ih.l

fI(x,y) == °
f2(x,y)EIh.1

f2(X,y) - °

for (x, y) E Rl(V, /k) n R2(V, /k),

for (x, y) E R - Rl(v, /k) n R2(V, /k),

for (x, y) E Rl(V, /k),

for (x, y) E R - Rl(V, /k),

for (x, y) E R2(V, /k),

for (x, y) E R - R2(v, /k),

it follows that Theorem (2.1) can also be applied to functions g(x, y) of type
(2.4) if k = m and/or I = n.

Because &£(g), as defined by (2.2), is of type (2.1). It follows from Theorem
(2.1) that for all g E cmn[R],

f
b' b2 om+n

&£(g) = (_I)m+n f K(x, y) 0 m 0 n g(x, y) dy dx
al a2 X Y

provided &£(g) vanishes for all g E IIm-l. n- 1 •

Hence, the sum on the right side of (2.2) defines an approximation to l(g)
which is best in the sense of Sard [5] if the parameters c~~ are a solution of
the following minimization problem: Minimize

under the side conditions

&£(g) == °
where

for all g E IIm- 1•n- 1 , (2.6)

1
K(x, y) = (m _ I)! (n _ I)! &£st«x - S)~-l (y - t)~-l),

Kll(x) = (m _ \)! l! &£st«x - S)~-l (b2 - t)l), I = 0, , n - 1,

K2k(y) = k! (n 1_ I)! &£st«bl - S)k (y - t)~-l), k = 0, , m - 1,

and &£(g) is defined by (2.2).
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Before we pursue this matter any further we turn to the construction of a
two-dimensional spline interpolation formula, which will be a basic tool
for the solution of the above minimization problem.

3. THE Two-DIMENSIONAL g SPLINE INTERPOLATION FORMULA

Let I(v, p,) be defined as in Section 2 and define the subsets Iiv

of{O, , m - I} and Ji " of {O, , n - I}, for j = 0,... , n - 1, v = 1,... , p - 1,
i = 0, , m - 1 and fL = 1, , q, as follows:

N E I iv if and only if there exists I <; n - 1 - j

such that (N, I) E I(v, 1) u ... u I(v, q),

N E Ji" if and only if there exists k <; m - 1 - i

such that (k, N) E 1(1, fL) U ... U I(p, fL).

Finally, for j = 0,..., n - 1, let

hI! = {O,... , m - I}.

We consider the one-dimensional spline functions

(3.1)

(3.2)

2J

slx) = L L w~i(X - xv)~m-l-i,
v~l iE/iv

and
q

() '\' '\' H( )2n-l-i
t; y = L. L. p" Y - y" + ,

,,~l iEJip.

Furthermore, let

j = 0,... , n - 1,

i = 0,... , m - 1.

2J q

I(x, y) = L L L a~~(x - xv)~m-l-i (y - y,,)~n-l-i
v~l ,,~1 (i,i)E/(v.,,)

and denote by

the set of all functions Sex, y) which can be written in the form

n-l m-l

sex, y) = I(x, y) + L yislx) + L xit;(y) + P(x, y),
i~O i~O
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y ~ Ya,for

j = 0,... , n - 1,

i = 0, ... , m - 1.

y ~ Ya,for

for

for

where P(x, y) E flm - 1•n - 1 and

om
-,;,-f(x, y) == 0uxm

on
-,;,-f(x, y) == 0cJyn

dm
-s·(x) - 0dxm J

dn

dyn ti(y) = 0

As in Ref. [4] we call any S E Qmn a two-dimensional natural g spline for the
knots (xv, Y,..), v = 1'00" p, f-L = 1,... , q, the sets lev, f-L) and order (m, n).

Let f3~~ be arbitrary real numbers and consider the following interpolation
problem: Find S E Qmn satisfying

~+i ..
oxi oyi S(xv , y.J = f3~~ , (i, j) E lev, f-L),

v = l, ... ,p, f-L = l,oo.,q. (3.3)

We say the interpolation problem is (m, n)-poised [4], provided that

OHi
oxi oyi S(X., y,,) = 0, (i, j) E lev, tt),

v = 1,.00,p, f-L = 1,... , q,

imply sex, y) - 0 for all S E Qmn such thatf(x, y) == O.
In Ref. [4] it was shown that if the interpolation problem is (m, n)-poised,

then there exists a unique So E Qmn which satisfies (3.3). The parameters
determining this So(x, y) can be obtained by solving a system of linear
equations.

Now suppose the interpolation problem is (m, n)-poised. For (i, j) E lev, f-L),
v = 1,... , p, f-L = 1'00" q, let ~~(x) denote the uniquely determined element
of Qmn which satisfies the relations

Ok+l .. 11
oxk oyl S~~(x~ , y,,) = 0

if k = i, 1 = j, g = v, 7] = f-L,
if k i=- i, 1 i=- j, g i=- v, or 7] i=- f-L,

(k, I) E leg, 7]), g = 1,... , p, 7] = 1'00" q. (3.4)

For functions g(x, y) with appropriate differentiability properties we consider
the interpolation formula

JJ q Oi+i ..
g(x, y) = L L L oxi 0 i g(xv , y,,) S~~(x, y) + []leg). (3.5)

v~l ,,~l li,ilellv,,,) Y
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The sum on the right side represents the element of Q mn which satisfies (3.3)
with

Following Schoenberg's terminology in the one-dimensional case [7], we
call (3.5) the (two-dimensional) g-spline interpolation formula of order
(m, n). It is exact for all elements of Qmn •

In the next section we shall assume that for v = 1,... , p and fL = 1,... , q,
the sets I(v, q) and I(p, fL) have the following properties:

If for any io E {O,... , m - I} there exists some jo E {O,... , n - I}

and some fLo E {I,... , q} such that (io, jo) E I(v, fLo), then

(io , j) E I(v, q) for all j E {O,... , n - I}. (3.6)

If for any jo E {O, ... , n - I} there exists some io E {O,... , m - I}

and some VoE {I,... , p} such that (io, jo) E I(vo ,fL), then

(i, jo) E I(p, fL) for all i E {O, ... , m - I}. (3.7)

It is easily seen that under these assumptions

Iov = IIv = '" = In-I. v ,

and

v = 1,... ,p,

fL = 1,... , q.

As a simple example of an interpolation problem (3.3) which is (m, n)-poised
and has the properties (3.6) and (3.7), we consider the case m = n = 2 and
p, q > 2. Furthermore, we assume that the values of S(x, y) at the mesh
points (xv, y,J, the normal derivates of S(x, y) at the boundary points of the
mesh, and the cross derivative at the four corners of the mesh are prescribed.
That is, we assume

1(1, 1) = 1(1, q) = I(p, 1) = I(p, q) = {(a, 0), (0, 1), (1, 0), (1, I)},

1(1, fL) = I(p, fL) = {(a, 0), (1, O)}, fL = 2, , q - 1,

I(v, 1) = I(v, q) = {(a, 0), (0, I)}, v = 2, , p - 1,

I(v, fL) = {(O,O)}, v = 2,..., p - 1, fL = 2, , q - 1.

Under these assumptions,

1;1 = I;'IJ = {O, I},

I;v = {O}, j = 0, 1,

j = 0, 1,

v = 2,...,p - 1,



and

TWO-DIMENSIONAL SPLINE FUNCTIONS

Ji1 = Jiq = {O, I}, i = 0, 1,

J i" = {O}, i = 0, 1, J1- = 2,... , q - 1.
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Therefore, as is not difficult to verify, the interpolation problem (3.3) is
(m, n)-poised. Finally, the definitions of lev, q) and l(p, J1-) imply immediately
that (3.6) and (3.7) are fulfilled.

4. THE BEST ApPROXIMATION FORMULA

Having the spline interpolation formula (3.5) at our disposal we can now
prove the main theorem of this paper. It states that the best approximation
(2.2) to t(g) is obtained by applying t to both sides of the two-dimensional
g-spline interpolation formula (3.5). In the one-dimensional case this fact was
established by Schoenberg [6] and Ahlberg and Nilson [1].

THEOREM (4.1). Suppose that the interpolation problem (3.3) is (m, n)
poised and satisfies (3.6) and (3.7). Furthermore, let Xp = b1 and Yq = b2 •

Then the coefficients c~~ minimize the function (2.5) under the side conditions
(2.6), if and only if

(i, j) E lev, /1-), v = l, ...,p, /1- = 1,... , q.

Here S~~(x, y) are the spline functions defined by (3.4).

Proof We shall prove this theorem by generalizing a method which was
used by Greville [3] and Schoenberg [6] in establishing Theorem (4.1) for
the one-dimensional case.

Let t be of type (2.1) and g E cmn[R]. We consider the linear functionals

p q .. Oi+i
gfO(g) = t(g) - L L L c~~ oxi oyi g(xv ,y,,) (1)

v~l ,,=1 (i, i)e[(v,,,l

and

p q .. Oi+i
gfl(g) = t(g) - L L L d:~ OXi Oyi g(Xv , y,,), (2)

v=I,,=1 (i.i)e[(v,,,l

where c~~ = t(S~~) and the coefficients d;~ are only required to satisfy the
equations (2.3).

Since we know that the spline interpolation formula (3.5) is exact for all
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S E [Jmn it follows that the approximation formula (1) obtained from (3.5)
by operating on both sides with t is also exact for all S E [Jmn , i.e.,

Hence, also,

Let

BlO(S) = 0

8lO(g) = Bll(g) = 0

for all S E [Jmn .

for all g E IIm-1,n-l .

(3)

(4)

1> q dH ii
Ml(X,y) = L L L (-I)i+i v~ - Cv... .

v~l ...=1 (i.i)eI(v, ... ) (2m - 1 - I)! (2n - 1 - J)!

then

1 ° (x - S)';-l (y - t)~-l _ om+n 1
(Bl. t - Bl.t) ( (m _ I)! (n _ I)! ) - oxm oyn M (x, y). (5)

Because

(x - S)';-l (y - t)~-l

= (_l)m (s - X)';-l (y - t)~-l + (_l)n (x - S)~-l (t _ y)~-l

+ (_l)m+n-l (s - X)~-l (t - y)~-l + (x - s)m-l (y - t)n-l,!

it follows from (1), (2), (4), and (5) that

om+n
oxm oyn Ml(X, y)

1-;---.,..,--;-;----".,,-;- (Bl~t - Bl~t)«_l)m (s - x)m+-l (y - t)+n-l
(m-l)!(n-l)!

+ (-I)n (x - S)';-l (t - y)~-l + (_I)m+n-l (s - X):;-l (t _ y)~-l)

1> q dii _ Cii
= L L L v~ v... . «_l)m-i (xv - x)m-l-i

v~l ...~l (i,ileI(v, ... ) (m - 1 - I)! (n - 1 - J)! +

+ (_l)m+n-l-i-i (xv - X)';:-l-i (y... _ y)~-l-i).

1 Ifm = 1 we define (s - x)+O(y - 1):-1 = (x - s)+°(l - y):-1 = (s - x)+O(t - y)';.-I=O
for x = s, and if n = 1 we define (s - X)'~-I(y - t)+° = (x - S)';:-I(t - y)+° = (s - X),;,-1
(t - y)+o = 0 for y = t.
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It is a direct consequence of this equality and of the definition of MI(x, y) that

if x < Xl' Y < YI , or if X ~ x:v, Y ~ Ya'
Now let

(6)

and
02m-I-k

tk(y) = OX2m- I- k MI(hl + 0, y),

1= 0,..., n - I,

k = O,...,m-1.

(7)

(8)

Then it follows from (6) and the definition of MI(x, y) that

and

for x < Xl

for y < YI

and

and

X ~x:v, (9)

(10)

Furthermore, for every gE {I,..., p}, the contribution to sz(x) due to a fixed
knot xe is

Similarly, for every 7J E {I,... , q}, the contribution to tk(y) due to a fixed
knot Y'I is

Thus, by (3.6) and (3.7), sz(2m-I-il(x) is continuous at X = x, if i fj: I ze ,
and tk2n- I - i )(y) is continuous at Y = Y'I if j fj: Jk" , where Iz• , I = 0,... , n - I,
g = I, ...,p, and Jk'l' k = 0,... , m - I, TJ = 1,... , q, are defined by (3.1) and
(3.2), respectively.

It follows therefore from (9) and (10) that

(b2 - y)Z sz(x) E Q mn

(hI - X)k tiy) E Qmn

for I = 0, , n - I,

for k = 0, , m - 1.

(13)

(14)
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Since (3.6) and (3.7) hold, we conclude from (7), (8), (11), and (12) that there
are coefficients S~~, (i,j) ElvI>, v = 1, ... ,p, fk = 1,... , q, such that

for (i, j) E lVI>' V = I, ...,p - I, fk = I, ..., q - I, (15)

satisfying

p q SO
N(x,y) = L L L (2 1 .),vb 1 ")'

v=1 1>=1 (i.j)E[(v.I» m - - Z. n - - ] .

and

Now let

02n-1-1
oy2n-H N(x, b2 + 0) = Sz(x),

02m-1-k
OX2m- 1- k N(b1 + 0, y) = tiy),

1= 0,... , n - 1,

k = 0,... , m - 1.

(16)

(17)

M2(X,y) = M1(X,y) - N(x,y).

Then, by (7), (8), (16), and (17),

02n-1-1
oy2n-1-1 M2(X, b2 + 0) == 0,

02m-1-k
OX2m- 1- k M2(b1 + 0, y) == 0,

1= 0,... , n - 1,

k = 0,... , m -1.

Using Lemma (2.2) of Ref. [4] we, obtain from these identities that

for x;?; x p ,

for y;?; yq.

and
on
oyn M2(X, y) == °

Hence, by the definitions of M1(X, y) and N(x, y),

If we put

(18)

1= 0, ... , n - 1, (19)
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and
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it follows that

k = 0,... , m - 1, (20)

s~m)(x) == °
ilcn)(y) =°

for x;?: x p , I = 0, ... , n - 1,

for y;?: Yq ' k = 0, ... , m - 1.

Since it is an immediate consequence of (3.6) and (3.7) that sj2m-l-i)(x) is
. 1 'f .dId '(2n-l-i)( ) . .contmuous at x = xv, v = , ... , p, 1 1 'F lv' an tk y IS contmuous

at y = y" , fJ, = 1,... , q, if j ¢: Jk " , we have

(b2 - yY A () (b2 - y)1 f " wii(X _ X )2m-l-i E Q
I! SIX = l! L.- L.- v v+ mn'

v=l iE!iv

1= 0,... , n - 1, (21)

(b1 - X)k '( ) _ (b1 -, X)k Iq I ..( )2 1 . Q-'---'0-..;--;--"- t Y p' J Y - Y n- - J E
k ! k - k "" + mn '

. ,,~1 iEJiJi

k = 0, ... , m - 1. (22)

For i = 0, 1, let

KII(x) = (m _II)! I! ~~t«x - S)';-1 (b2 - IY), 1= 0, , n - 1, (23)

K~k(Y) = k! (n 1_ I)! ~~zC(bl - S)k (y - t)~-I), k = 0, , m - 1, (24)

Ki(X, y) = (m _ 1) !\n _ I)! ~~zC(x - S)';-1 (y - t)~-I). (25)

It follows from (3), (4), (I9)-(24), Theorem (2.1), and Remark 1 that

(26)

(27)
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Since by (3) and (18), £lO(M2(x, y» = 0, we obtain from (4), (25)-(27),
Theorem (2.1), and Remark 1 that

Observe that, by (15), N(x, y) - ° for x < x p = bl and y < Yq = b2.
Hence, the above equality implies

f
bI fb2 om+n
al 'a2 KO(x, y) oxm oyn Ml(X, y) dy dx = 0,

which, by (5) and (25), is equivalent to

bI b2f f KO(x,.y)(Kl(X, y) - KO(x, y» dy dx = 0.
al a2

An immediate consequence of the last equality is

~ ~ ~ ~

= f f (KO(x, y»2 dy dx + f f (Kl(x, y) - KO(x, y»2 dy dx. (28)
al a2 al a 2

Furthermore, by (3), (13), and (14),

£lO«b2 - y)l Sl(X» = ~O«bl - X)k tiy» = 0,

1= 0,... , n - 1, k = 0"00' m - 1.

Thus, it follows from (4), (23), (24), Theorem (2.1), and Remark 1 that

and

b
If K~I(X) sim)(x) dx = 0,

al

1= 0, ... , n - 1,

k = 0, ..., m - 1.

(29)

(30)

By (1), (2), (23), (24), and the definition of Ml(X, y),

om+2n-l-l
Ktt(x) - K~I(X) = oxm oy2n-l-l M1(x, b2+ 0),

a2m-l-k+n
K:k(y) - K~iy) = OX2m- l- k oyn Ml(bl + 0, y),

1= 0,..., n - 1, (31)

k = 0,0,0, m - 1. (32)
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Hence (7), (8), (29), and (30) imply
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b2f Kgk(y)(KMy) - Kgiy)) dy = 0,
a2

From these equalities it follows that

1= 0,... , n - 1,

k = 0,... , m - 1.

b, b2

= f (K~I(X))2 dx + f (Ktz(x) - K~I(X))2 dx, I = 0,... , n - 1, (33)
al a2

Hence, (28), (33), and (34) imply that

n-l b, m-l b2 b, b2

L J (Ktl(X))2 dx + L J (KMy))2 dy + J J (K1(x, y))2 dy dx
I~O a, k~O a2 a, a2

n-l b, m-l b2 b, b2

> L f (Kfl(X))2 dx + L f (KMy))2 dy + f f (KO(x, y))2 dy dx
l=O UI k=O a2 Ul a2

unless

and

K\x, y) - KO(x, y) == 0,

KtI(X) - Kfl(X) = 0, 1= 0, ... , n - 1,

k = 0, ... , m - 1,

which, by (25), (5), (31), and (32) is equivalent to

(i, j) E I(v, I-t), v = l, ... ,p, I-t = 1, ... , q.

This completes the proof of the theorem.
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Remark 2. Let g E cmn[R] and (x, y) E R. The linear functional I
defined by I(g) = g(x, y) is of type (2.1). Hence, it follows from the above
theorem that the spline interpolation formula (3.5) is a best interpolation
formula in the sense of Sard [5], provided the interpolation problem (3.3) is
(m, n)-poised, and (3.6) and (3.7) hold and x p = bI , Yq = b2 •
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